Submitted Papers:
- Durante, D., Pozza, F., Szabo, B. (2023) Skewed Bernstein-von Mises theorem and skew-modal approximations. Arxiv preprint.
- Nieman, D., Szabo, B.T. & van Zanten, J.H. (2022) Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression. Arxiv Preprint.
- Hadji, A., Hesselink, T., Szabo, B.T. (2022) Optimal recovery and uncertainty quantification fordistributed Gaussian process regression. Arxiv preprint.
- Franssen, S. & Szabo, B.T. (2022) Uncertainty Quantification for nonparametric regression using Empirical Bayesian neural networks. Arxiv preprint.
- Zaman, A. & Szabo, B.T. (2022) Distributed Nonparametric Estimation under Communication Constraints. Arxiv preprint.
- Wouter van Loon, Marjolein Fokkema, Botond Szabo, & Mark de Rooij. (2020) View selection in multi-view stacking: Choosing the meta-learner Arxiv preprint.
Published or Accepted Journal Articles
- Szabo, B.T., Vuursteen, L. & van Zanten, J.H. (2023+) Optimal high-dimensional and nonparametric distributed testing under communication constraints. To appear in Annals of Statistics.
- Szabo, B. T. & van Zanten, J.H. (2022) Distributed function estimation: adaptation using minimal communication. Mathematical Statistics and Learning 5 (3/4): 159-199.
- Ray, K. and Szabo, B. T. (2022) Variational Bayes for high-dimensional linear regression with sparse priors. Journal of the American Statistical Association 117 (539): 1270-1281.
- Nieman, D., Szabo, B.T. & van Zanten, J.H. (2022) Contraction rates for sparse variational approximations in Gaussian process regression. Journal of Machine Learning Research 23 (205) :1-26.
- van Loon, W., de Vos, F., Fokkema, M., Szabo, B., Koini, M., Schmidt, M., de Rooij, M. (2022) Analyzing hierarchical multi-view MRI data with StaPLR: An application to Alzheimer’s disease classification. Frontiers in Neuroscience, section Brain Imaging Methods (16). Doi: 10.3389/fnins.2022.830630.
- Szabo, B.T., Vuursteen, L. & van Zanten, J.H. (2022) Optimal distributed composite testing in high-dimensional Gaussian models with 1-bit communication. IEEE Transactions on Information Theory 68 (6), 4070-4084.
- Hadji, A. and Szabo, B. (2021) Can we trust Bayesian uncertainty quantification from Gaussian process priors with squared exponential covariance kernel? SIAM/ASA Journal of Uncertainty Quantification 9 (1), 185-230.
- van Erven, T. and Szabo, B. (2021) Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model. Bayesian Analysis 16 (3), 933-960.
- Szabo, B. T. and van Zanten, J.H. (2020) Adaptive distributed methods under communication constraints. Annals of Statistics 48 (4), 2347-2380
- Rousseau, J. and Szabo, B. (2020). Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors. Annals of Statistics 48 (4), 2155-2179.
- van Loon, W., Fokkema, M., Szabo, B., and de Rooij, M. (2020) Stacked Penalized Logistic Regression for Selecting Views in Multi-View Learning. Information Fusion 61 (September) 113-123.
- Mariucci, E., Ray, K., and Szabo, B. T. (2020) A Bayesian nonparametric approach to log-concave density estimation. Bernoulli 26 (2), 1070-1097.
- Castillo, I. & Szabo, B. (2020) Spike and slab empirical Bayes sparse credible sets. Bernoulli 26 (1), 127-158
- Ray, K. & Szabo, B. T. & and van der Vaart, A. (2020) Discussion of Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding and Heterogeneous Effects by Hahn, Murray & Carvalho . Bayesian Anal. 15 (2020), 1026-1028.
- Szabo, B. T. and van Zanten, J.H. (2019) An asymptotic analysis of distributed nonparametric methods. Journal of Machine Learning Research 20, 1-30.
- van der Pas, S., Szabo, B. and van der Vaart, A. (2017). Uncertainty Quantification for the Horseshoe (with Discussion). Bayesian Analysis 12(4): 1221-1274.(or: arXiv)
- van der Pas, S., Szabo, B. and van der Vaart, A. (2017). Adaptive posterior contraction rates for the horseshoe. Electronic Journal of Statistics 11(2): 3196-3225.(or: arXiv)
- Rousseau, J. and Szabo, B. (2017). Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator. Annals of Statistics 45(2): 833-865.(or: arXiv)
- Nickl, R. and Szabo, B. T. (2016). A sharp adaptive confidence ball for self-similar functions. Stochastic Processes and their Applications 126(12): 3913-3934.(or: arXiv)
- Knapik, B. T., Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. (2016). Bayes procedures for adaptive inference in nonparametric inverse problems. Probability Theory and Related Fields 164 (3), 771-813. (or: arXiv)
- Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. (2015). Rejoinder to discussion of “Frequentist coverage of adaptive nonparametric Bayesian credible sets.” Annals of Statistics 43 (4), 1463 – 1470. (or: arXiv )
- Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. (2015). Honest Bayesian confidence sets for the L2-norm. Journal of Statistical Planning and Inference 166, 36–51. (or: arXiv )
- Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. (2015). Frequentist coverage of adaptive nonparametric Bayesian credible sets. Annals of Statistics 43 (4), 1391 – 1428. (or: arXiv )
- Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. (2013). Empirical Bayes scaling of Gaussian priors in the white noise model. Electronic Journal of Statistics, 7, 991–1018.
- Turanyi, T., Nagy, T., Zsely, I. Gy., Cserhai, M., Varga, T., Szabo, B. T., Sedyo, I., Kiss, P. T., Zempleni, A., and Curran, H. J. (2012). Determination of rate parameters based on both direct and indirect measurements. International Journal of Chemical Kinetics, 44(5), 284-302.
- Varga, L., Szabo, B., Zsely, I. Gy., Zempleni, A., and Turanyi, T. (2011). Numerical investigation of the uncertainty of Arrhenius parameters. Journal of mathematical chemistry, 49(8), 1798-1809.
Refereed conference publications
- Ray, K., Szabo B.T. & Clara, G. (2020) Spike and slab variational Bayes for high dimensional logistic regression. Advances in Neural Information Processing Systems (NeurIPS).
- Ray, K. and Szabo, B. T. (2019) Debiased Bayesian inference for average treatment effects. Advances in Neural Information Processing Systems (NeurIPS), 11929-11939.
- Szabo, B. T. (2014). Confidence sets from empirical Bayes procedures with conditionally Gaussian priors on Sobolev balls. Proceedings of the 18th European Young Statistician Meeting, 113-117.
- Berg, J. B. van den, Castro, R. M., Draisma, J., Evers, J. H. M., Hendriks, M., Khimshiashvili, G., Krehel, O., Kryven, I., Mora, K., Szabo, B. T. and Zwiernik, P. W. (2012). Non-imaging optics for LED-lighting. Proceedings of the 84th European Study Group Mathematics with Industry, 70-103.
Book Chapters
- Szabo, B. T. (2015). On Bayesian based adaptive confidence sets for linear functionals. Bayesian Statistics from Methods to Models and Applications 91–105.
R packages
- Clara, G., Szabo, B.T. and Ray, K. (2020) sparsevb (Variational Bayes for High-dimensional Linear and Logistic Regression).
- de Rooij, S., van Erven, T., Szabo, B.T. (2019) SequenceSpikeSlab (Exact Bayesian Model Selection Methods for the Sparse Normal Sequence Model)
PhD Thesis
- Szabo, B. T. (2014). Adaptation and confidence in nonparametric Bayes.
Master Thesis
- Szabo, B. T. (2010). Bayesian adaptation using conditionally Gaussian priors.
Hungarian Students Scholar Circle (OTDK)
- Jordan, T., Szabo, B. T.(2011). A korlatossag vizsgalata irany-hossz vegyes grafok eseten. OTDK, Nyiregyhaza.
- Szabo, B. T., Turanyi, T., Zsely, I. Gy. (2010) Arrhenius-paramaterek becslese kozvetett es kozvetlen meresek alapjan. OTDK, 2011.
External collection of publications
- Me on google scholar.
- Me on researchgate.
- Me on MathSciNet.
- Me on ArXiv.
- Me on Scopus